Change in Submarine Sonar

Bill Johnson WMJ Associates LLC wmj23@comcast.net

Fact of Life Challenges

SUBMARINE R&D FSU/US Nuclear Stealth \$ (M) 5000 VICTOR I 4500 ALFA **Radiated Noise (dB)** 4000 VICTOR III IMPROVED VICTOR III 3500 3000 **AKULA** 2500 IMPROVED AKULA 2000 4th GEN 1500 **Diesel Submarine Radiated Noise Trend** 1000 Foreign Diesels 500 US Nuclear Subs Estimates 0 **Radiated Noise (dB)** ROMEO 1960 197 UZUSHIO '80 '92 <u>م</u> '96 '98 '00 DAPHNE HERON SAVA Sdow /s 10³ SAURO VUUSHIO SONG Mbit OBERON HARUSHIO DOLPHIN 212 COLLINS KILO SSN21/NSSN Bits/Ch 1950 1960 1990 1970 1980 2000 2010

0 0 0 0

Sonar Development Funding

Less Funding – a Reality!

Findings: Systemic

- There is <u>no "quick-fix"</u> to the sonar problem.
- There is <u>no focused technical management</u> with detailed knowledge of (i.e. to the IUSS community) and responsibilities across submarine sonar system boundaries.
- Priorities in submarine sonar programs have been driven by a target rich environment toward highly integrated combat systems capable of handling multiple targets.
- There is a <u>lack of innovative progress</u>, which is always the result of experimentation and iteration (i.e. build-test-build)
 - -Yet, in 18 months SURTASS built and fielded in operational prototype a complete twin-line array system and began testing in operationally significant littoral waters.

Evolutionary Sonar Improvement Program

- Establish and maintain a process to rapidly improve sonar system effectiveness with the following characteristics:
 - -Evolutionary improvements through iteratively exploiting the lessons learned in a <u>"build-test-build"</u> program
 - -Focus on at-sea experimentation and data analysis
 - -<u>Utilization of encounter data recorded</u> in existing systems
 - -Signal Processing Innovations
 - Implementation via COTS insertion in <u>open architecture</u>
 - Developing and testing prototype systems in parallel to BSY-1/2 systems
 - -<u>Fleet involvement in testing and improvement</u> of prototypes
 - Fielding limited numbers of prototypes in forward deployed submarines
- Primary thrusts of this sonar improvement program are contained in the recommendations to follow

UNCLASSIFIED

Acoustics Rapid COTS Insertion A-RCI Objectives

- Achieve dB Gains Faster
- Deliver Additional Acoustic Improvements
- Make Improvements Applicable to all SSN 688, 688I, and SSBN 726 Class Submarines (and Not All Linked to TB-29)
- Implement COTS Based Open System
 - -Increased Processing Capacity
 - -Growth Potential
 - -Reduced Cycle Time for Future Upgrades
 - -Better return on Development Dollars
 - -Space/Weight Reduction

Design to Meet these Objectives

Acoustics Rapid COTS Insertion Acquisition Strategy

- •Leverage, Leverage, Leverage
- Maximum use of COTS/NDI
- Institutionalize software Re-Use
- Pooled several standalone legacy system upgrades into single COTS-based development program
- Share talents and resources between
 Program Offices

Acoustic Master Plan

UNCLASSIFIED

Submarine Sonar Axioms

- 1. Rapid COTS Insertion Means Just That.
- 2. Deliver Each Sensor's Full Theoretical Gain to the Operator: All Bearings, All Frequencies, All the Time.
- 3. Avoid Modifying Successful Commercial Products.
- 4. Use the Lessons Learned.
- 5. Use State of the Practice, not State of the Art; Tactical Sonar Systems are not a Beta Test Site.
- 6. Configuration Management, vice Configuration Control.
- 7. Software Reuse Is Key to Affordability!
- 8. No One Organization Has the Full Story.
- 9. Submarine Acoustic Superiority Depends on the Successful use of these axioms.

CAPT J. P. Jarabak, USN

CAPT G. L. Sieve, USN

Acoustics Rapid COTS Insertion Acquisition Reform Accomplishments

- Increased early involvement of OPTEVFOR to Streamline Operational Testing
- Minimized Use of MIL-STDs
 - » Original ECP 1000 SOW contained 81 Military Unique Standards/Specifications

• 44 Eliminated

16 Replaced with Commercial Specifications

O 21 Retained as Guidance

• A-RCI Eliminated 5 Additional, Added 3 as Guidance

» Original ECP 1000 PIDS contained 68 Military Unique Specifications

• 58 Eliminated

- **O 2** Replaced with Commercial Specifications
- **0**4 Retained as Guidance
- 4 Retained Mandatory (Waiver Granted)

OPrimarily Interface/Shock and Vibration

• A-RCI added 12 as Guidance and added 8 Commercial Standards

Formalized Integrated Product Teams

Leverage the commercial sectormake a place for small business

Submarine Combat System Cost -Reversing the Trend

COTS Based Systems

Eat the Elephant ... just not in one Bite

A-RCI = AN/BQQ-10 IMPLEMENTATION + APB's

Develop an Inclusive ... and Networked Community

Rapid Technology Transition Process

Stay in Synche!

Innovation is a team sport

Strong User - Government/Lab -Contractor IPTs

Be an Enterprise! ...Collaborate & Share

A-RCI Software Commonality

Deliver Results ... Early and Often!

Demonstrated Performance Gains

A-RCI Installation Profile (PR-03)

Riding Moore's Law

ARCI Pushing the Application of Commercial Technology Envelope

Net Allocatable Processing Capacity

7x Increase In Real Processing From TI 97 to TI 02 60x Decrease In Real Processing Cost From TI 97 to TI 02

ARCI Processing Projection With Technology Insertion

Utilized Processing Capacity

Installed Capacity

Fully Populated Capacity (Max drawers & cabinets)

Latent Demand Estimate

TRxxTechnology Model Year

Towed Array Processing Performance Improvement Trend

	<u>AN/BQQ-5</u>	<u>A-RCI/APB-98</u>	<u>A-RCI/APB-00</u>				
Mean Operator Detection Success Rate	23%	49%	87%				
	Improved by a Factor of ~ 4						
Mean # of False Alarms Per Run	1.0	0.92	0.58				
	False Alarms Reduced by 40%						
Mean Initial Detection & Classification Time	Baseline	9 Min Earlier	27 Min Earlier				
(When Detection Occurred)	Impro	ved by 27 Min	utes				
Mean Contact Holding Time* (When Detection Occurred)	Baseline	10 Min Longer	25 Min Longer				
	Improved by 25 Minutes*						

* Measured holding time limited by the length of recorded tape.

A system is more than ... hardware and software

Changes to Logistics Support Products

New Products Have Smaller Logistics "Tail"

Realized Cost Avoidance for Logistics Support

Outfitting Spares Reduction

Don't forget the operator!

The Operator in the Loop

Operator Recognition of Contacts								
OPERATORS	NUMBER OF OPERATORS		PERCENT OF CONTACTS RECOGNIZED					
ACINT Operators		13			76%			
ACINT Trainees		7			57%			
Non-ACINT Operators		174			25%			

The business of "open acquisition" ... is different.

Changed BUSINESS VISIONS

"Traditional"

- Deficient GFE
- Meet the Spec
- Follower
- Yesterday's Technology
- Competing Cost Centers
- Overruns
- Builds Computers
- Bureaucratic
- Inflexible
- 6-8 Years Development
- Pieces & Stove Pipes
- To-The-Death Competition•
- Re-Invent Wheel
- Near Team Bottom Line
- In-Tune w/Spec
- Years of Experience
- 6.5 Only

• System Ownership

"Open"

- Build-Test-Build
- Leader
- Today's/Tomorrow's Technology
- Teaming Cost Centers
- On Cost, On Schedule, Exceed Performance
- Packages/Interfaces Computers
- Flat Organization
- *"Turn-on-a-Dime"*
- 1-2 Years Development
- "End-to-End" View
 - Team w/Competition Day-to-Day
- Improve Wheel
- Long Range Success
- In-Tune w/Threat
- New Ideas
- 6.2 thru 6.5

TOC Savings are Real!

Total Cost Savings

Top Down Comparison of the Budget Allocations

How "Open" ... is the Navy Today?

The "Culture Change" Problem

How to span the "Valley of Death"

- Make the vision relevant to the warfighter.
- Establish incremental performance goals based on Fleet needs.
- Select leaders at all levels who can deal with uncertainty without losing sight of the vision – reward success
- Develop and cultivate allies at all levels the strongest ally is the Fleet.
- Involve industry, especially "non-traditionals", in the formulation of strategies and architectures.
- Instill within the "Team" a sense of empowerment and entrepreneurial spirit.

Commit and Be Accountable!

ARCI Chronology

- DEC 94 MDA (VADM Sterner) approves plan for the AN/BSY-1 ECP 1000 program. At-sea fielding was planned for mid FY00 (approx 6 years later).
- SEP 95 The Submarine Sonar Technology Panel "red team" reports their findings indicating serious acoustic superiority issues. Recommendations require radical transformation of SUB's approach to designing and fielding sonars.
- NOV 95 ARCI concept briefed to SSTP and OPNAV (RADM Jones)
- APR 96 OPNAV (RADM Jones) directs SUBs to implement ARCI
- JUN 96 COMNAVSEA /MDA (VADM Sterner) approves ARCI plan
- NOV97 PMS425 Certifies ARCI (Phase I) which is installed on AUGUSTA in Dec. (eg Q5E performance delivered to 688 in 18 months from MDA decision)
- JUN 2004 8 year anniversary of the ARCI MDA decision. ARCI is installed on over 50 subs with at least 4 generations of hardware and software upgrades

MAN BATTLE STATIONS! A-RCI HAS DETECTED YOU FOR ACOUSTIC SUPERIORITY.

LEAD, FOLLOW OR GET OUT OF THE WAY!!! A-RGI! EXPEDITE ... NOW!